Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Journal of critical care ; 77:154313-154313, 2023.
Article in English | EuropePMC | ID: covidwho-2292866

ABSTRACT

Background Despite its diagnostic and prognostic importance, physiologic dead space fraction is not included in the current ARDS definition or severity classification. ARDS caused by COVID-19 (C-ARDS) is characterized by increased physiologic dead space fraction and hypoxemia. Our aim was to investigate the relationship between dead space indices, markers of inflammation, immunothrombosis, severity and intensive care unit (ICU) mortality. Results Retrospective data including demographics, gas exchange, ventilatory parameters, and respiratory mechanics in the first 24 h of invasive ventilation. Plasma concentrations of D-dimers and ferritin were not significantly different across C-ARDS severity categories. Weak relationships were found between D-dimers and VR (r = 0.07, p = 0.13), PETCO2/PaCO2 (r = −0.1, p = 0.02), or estimated dead space fraction (r = 0.019, p = 0.68). Age, PaO2/FiO2, pH, PETCO2/PaCO2 and ferritin, were independently associated with ICU mortality. We found no association between D-dimers or ferritin and any dead-space indices adjusting for PaO2/FiO2, days of ventilation, tidal volume, and respiratory system compliance. Conclusions We report no association between dead space and inflammatory markers in mechanically ventilated patients with C-ARDS. Our results support theories suggesting that multiple mechanisms, in addition to immunothrombosis, play a role in the pathophysiology of respiratory failure and degree of dead space in C-ARDS.

2.
BJA Open ; 5: 100128, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2220477

ABSTRACT

Background: Corticosteroids are used to treat COVID-19 pneumonia. However, the optimal dose is unclear. This study describes the association between corticosteroid exposure with disease severity and outcome in COVID-19 pneumonia. Methods: This is a single-centre retrospective, observational study including adult ICU patients who received systemic corticosteroids for COVID-19 pneumonia between March 2020 and March 2021. We recorded patient characteristics, disease severity, total steroid exposure, respiratory support and gas exchange data, and 90-day mortality. Results: We included 362 patients. We allocated patients to groups with increasing disease severity according to the highest level of respiratory support that they received: high-flow nasal oxygen or continuous positive airway pressure (HFNO/CPAP) in 12.7%, invasive mechanical ventilation (IMV) in 61.6%, and extracorporeal membrane oxygenation (ECMO) in 25.7%. For these three groups, the median (inter-quartile range [IQR]) age was 61 (54-71) vs 58 (50-66) vs 46 (38-53) yr, respectively (P<0.001); median (IQR) APACHE (Acute Physiology and Chronic Health Evaluation) II scores were 12 (9-15) vs 14 (12-18) vs 15 (12-17), respectively (P=0.006); the median (IQR) lowest P a O 2 /FiO2 ratio was 15.1 (11.8-21.7) vs 15.1 (10.7-22.2) vs 9.5 (7.9-10.9) kPa, respectively (P<0.001). Ninety-day mortality was 9% vs 27% vs 37% (P=0.002). Median (IQR) dexamethasone-equivalent exposure was 37 (24-62) vs 174 (86-504) vs 535 (257-1213) mg (P<0.001). 'Pulsed' steroids were administered to 26% of the IMV group and 48% of the ECMO group. Patients with higher disease severity who received pulse steroids had a higher 90-day mortality. Conclusions: Corticosteroid exposure increased with the severity of COVID-19 pneumonia. Pulsed dose steroids were used more frequently in patients receiving greater respiratory support. Future studies should address patient selection and outcomes associated with pulsed dose steroids in patients with severe and deteriorating COVID-19 pneumonia.

3.
Ann Intensive Care ; 12(1): 118, 2022 Dec 28.
Article in English | MEDLINE | ID: covidwho-2196444

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is common in critically ill patients with coronavirus disease-19 (COVID-19). We aimed to explore the changes in AKI epidemiology between the first and the second COVID wave in the United Kingdom (UK). METHODS: This was an observational study of critically ill adult patients with COVID-19 in an expanded tertiary care intensive care unit (ICU) in London, UK. Baseline characteristics, organ support, COVID-19 treatments, and patient and kidney outcomes up to 90 days after discharge from hospital were compared. RESULTS: A total of 772 patients were included in the final analysis (68% male, mean age 56 ± 13.6). Compared with wave 1, patients in wave 2 were older, had higher body mass index and clinical frailty score, but lower baseline serum creatinine and C-reactive protein (CRP). The proportion of patients receiving invasive mechanical ventilation (MV) on ICU admission was lower in wave 2 (61% vs 80%; p < 0.001). AKI incidence within 14 days of ICU admission was 76% in wave 1 and 51% in wave 2 (p < 0.001); in wave 1, 32% received KRT compared with 13% in wave 2 (p < 0.001). Patients in wave 2 had significantly lower daily cumulative fluid balance (FB) than in wave 1. Fewer patients were dialysis dependent at 90 days in wave 2 (1% vs. 4%; p < 0.001). CONCLUSIONS: In critically ill adult patients admitted to ICU with COVID-19, the risk of AKI and receipt of KRT significantly declined in the second wave. The trend was associated with less MV, lower PEEP and lower cumulative FB. TRIAL REGISTRATION: NCT04445259.

4.
Genome Med ; 13(1): 182, 2021 11 17.
Article in English | MEDLINE | ID: covidwho-1523323

ABSTRACT

BACKGROUND: Clinical metagenomics (CMg) has the potential to be translated from a research tool into routine service to improve antimicrobial treatment and infection control decisions. The SARS-CoV-2 pandemic provides added impetus to realise these benefits, given the increased risk of secondary infection and nosocomial transmission of multi-drug-resistant (MDR) pathogens linked with the expansion of critical care capacity. METHODS: CMg using nanopore sequencing was evaluated in a proof-of-concept study on 43 respiratory samples from 34 intubated patients across seven intensive care units (ICUs) over a 9-week period during the first COVID-19 pandemic wave. RESULTS: An 8-h CMg workflow was 92% sensitive (95% CI, 75-99%) and 82% specific (95% CI, 57-96%) for bacterial identification based on culture-positive and culture-negative samples, respectively. CMg sequencing reported the presence or absence of ß-lactam-resistant genes carried by Enterobacterales that would modify the initial guideline-recommended antibiotics in every case. CMg was also 100% concordant with quantitative PCR for detecting Aspergillus fumigatus from 4 positive and 39 negative samples. Molecular typing using 24-h sequencing data identified an MDR-K. pneumoniae ST307 outbreak involving 4 patients and an MDR-C. striatum outbreak involving 14 patients across three ICUs. CONCLUSION: CMg testing provides accurate pathogen detection and antibiotic resistance prediction in a same-day laboratory workflow, with assembled genomes available the next day for genomic surveillance. The provision of this technology in a service setting could fundamentally change the multi-disciplinary team approach to managing ICU infections. The potential to improve the initial targeted treatment and rapidly detect unsuspected outbreaks of MDR-pathogens justifies further expedited clinical assessment of CMg.


Subject(s)
COVID-19/pathology , Cross Infection/transmission , Metagenomics , Anti-Bacterial Agents/therapeutic use , COVID-19/virology , Coinfection/drug therapy , Coinfection/microbiology , Corynebacterium/genetics , Corynebacterium/isolation & purification , Cross Infection/microbiology , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Female , Humans , Intensive Care Units , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Male , Middle Aged , Polymorphism, Single Nucleotide , SARS-CoV-2/isolation & purification , Sequence Analysis, DNA , beta-Lactamases/genetics
5.
JAMA ; 326(11): 1013-1023, 2021 09 21.
Article in English | MEDLINE | ID: covidwho-1441906

ABSTRACT

Importance: In patients who require mechanical ventilation for acute hypoxemic respiratory failure, further reduction in tidal volumes, compared with conventional low tidal volume ventilation, may improve outcomes. Objective: To determine whether lower tidal volume mechanical ventilation using extracorporeal carbon dioxide removal improves outcomes in patients with acute hypoxemic respiratory failure. Design, Setting, and Participants: This multicenter, randomized, allocation-concealed, open-label, pragmatic clinical trial enrolled 412 adult patients receiving mechanical ventilation for acute hypoxemic respiratory failure, of a planned sample size of 1120, between May 2016 and December 2019 from 51 intensive care units in the UK. Follow-up ended on March 11, 2020. Interventions: Participants were randomized to receive lower tidal volume ventilation facilitated by extracorporeal carbon dioxide removal for at least 48 hours (n = 202) or standard care with conventional low tidal volume ventilation (n = 210). Main Outcomes and Measures: The primary outcome was all-cause mortality 90 days after randomization. Prespecified secondary outcomes included ventilator-free days at day 28 and adverse event rates. Results: Among 412 patients who were randomized (mean age, 59 years; 143 [35%] women), 405 (98%) completed the trial. The trial was stopped early because of futility and feasibility following recommendations from the data monitoring and ethics committee. The 90-day mortality rate was 41.5% in the lower tidal volume ventilation with extracorporeal carbon dioxide removal group vs 39.5% in the standard care group (risk ratio, 1.05 [95% CI, 0.83-1.33]; difference, 2.0% [95% CI, -7.6% to 11.5%]; P = .68). There were significantly fewer mean ventilator-free days in the extracorporeal carbon dioxide removal group compared with the standard care group (7.1 [95% CI, 5.9-8.3] vs 9.2 [95% CI, 7.9-10.4] days; mean difference, -2.1 [95% CI, -3.8 to -0.3]; P = .02). Serious adverse events were reported for 62 patients (31%) in the extracorporeal carbon dioxide removal group and 18 (9%) in the standard care group, including intracranial hemorrhage in 9 patients (4.5%) vs 0 (0%) and bleeding at other sites in 6 (3.0%) vs 1 (0.5%) in the extracorporeal carbon dioxide removal group vs the control group. Overall, 21 patients experienced 22 serious adverse events related to the study device. Conclusions and Relevance: Among patients with acute hypoxemic respiratory failure, the use of extracorporeal carbon dioxide removal to facilitate lower tidal volume mechanical ventilation, compared with conventional low tidal volume mechanical ventilation, did not significantly reduce 90-day mortality. However, due to early termination, the study may have been underpowered to detect a clinically important difference. Trial Registration: ClinicalTrials.gov Identifier: NCT02654327.


Subject(s)
Carbon Dioxide/blood , Extracorporeal Circulation , Respiration, Artificial/methods , Respiratory Insufficiency/therapy , Aged , Early Termination of Clinical Trials , Extracorporeal Circulation/adverse effects , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/mortality , Tidal Volume
6.
Intensive Care Med ; 47(8): 887-895, 2021 08.
Article in English | MEDLINE | ID: covidwho-1279406

ABSTRACT

PURPOSE: Extracorporeal membrane oxygenation (ECMO) use for severe coronavirus disease 2019 (COVID-19) patients has increased during the course of the pandemic. As uncertainty existed regarding patient's outcomes, early guidelines recommended against establishing new ECMO centers. We aimed to explore the epidemiology and outcomes of ECMO for COVID-19 related cardiopulmonary failure in five countries in the Middle East and India and to evaluate the results of ECMO in 5 new centers. METHODS: This is a retrospective, multicenter international, observational study conducted in 19 ECMO centers in five countries in the Middle East and India from March 1, 2020, to September 30, 2020. We included patients with COVID-19 who received ECMO for refractory hypoxemia and severe respiratory acidosis with or without circulatory failure. Data collection included demographic data, ECMO-related specific data, pre-ECMO patient condition, 24 h post-ECMO initiation data, and outcome. The primary outcome was survival to home discharge. Secondary outcomes included mortality during ECMO, survival to decannulation, and outcomes stratified by center type. RESULTS: Three hundred and seven COVID-19 patients received ECMO support during the study period, of whom 78 (25%) were treated in the new ECMO centers. The median age was 45 years (interquartile range IQR 37-52), and 81% were men. New center patients were younger, were less frequently male, had received higher PEEP, more frequently inotropes and prone positioning before ECMO and were less frequently retrieved from a peripheral center on ECMO. Survival to home discharge was 45%. In patients treated in new and established centers, survival was 55 and 41% (p = 0.03), respectively. Multivariable analysis retained only a SOFA score < 12 at ECMO initiation as associated with survival (odds ratio, OR 1.93 (95% CI 1.05-3.58), p = 0.034), but not treatment in a new center (OR 1.65 (95% CI 0.75-3.67)). CONCLUSIONS: During pandemics, ECMO may provide favorable outcomes in highly selected patients as resources allow. Newly formed ECMO centers with appropriate supervision of regional experts may have satisfactory results.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Humans , India/epidemiology , Male , Middle Aged , Middle East , Pandemics , Retrospective Studies , SARS-CoV-2
7.
Crit Care Med ; 49(7): e663-e672, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1189487

ABSTRACT

OBJECTIVES: Extracorporeal membrane oxygenation is a lifesaving therapy for patients with severe acute respiratory distress syndrome refractory to conventional mechanical ventilation. It is frequently complicated by both thrombosis and hemorrhage. A markedly prothrombotic state associated with high rates of venous thromboembolism has been described in patients with severe acute respiratory syndrome coronavirus 2 (coronavirus disease 2019) infection. These rates have currently not been described during extracorporeal membrane oxygenation in comparison to other viral pneumonias. DESIGN: Retrospective observational study. SETTING: Single high-volume tertiary critical care department at a university hospital. PATIENTS: Patients 16 years old or greater receiving venovenous extracorporeal membrane oxygenation between March 1, 2020, and May 31, 2020, with coronavirus disease 2019 were compared with a cohort of patients with influenza pneumonia between June 1, 2012, and May 31, 2020. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The rates of venous thromboembolism and hemorrhage were compared in patients with coronavirus disease 2019 against a historic population of patients with influenza pneumonia who required extracorporeal membrane oxygenation. There were 51 patients who received extracorporeal membrane oxygenation due to coronavirus disease 2019 and 80 patients with influenza. At cannulation for extracorporeal membrane oxygenation, 37% of patients with coronavirus disease 2019 compared with 8% of patients with influenza had filling defects on CT pulmonary angiography (p = 0.0001). Catheter-associated deep vein thrombosis shown on ultrasound Doppler after decannulation was present in 53% with coronavirus disease 2019 versus 25% with influenza (p = 0.01). The rates of intracranial hemorrhage at the time of cannulation were 16% with coronavirus disease 2019 and 14% with influenza (p = 0.8). Elevated d-dimer levels were seen in both conditions and were significantly higher in those with pulmonary thromboembolism than those without in coronavirus disease 2019 (p = 0.02). Fibrinogen and C-reactive protein levels were significantly higher in those with coronavirus disease 2019 than influenza (p < 0.01). CONCLUSIONS: Significant rates of pulmonary thromboembolism and of catheter-associated deep vein thrombosis were seen in both viral infections but were greater in those requiring the use of extracorporeal membrane oxygenation in coronavirus disease 2019 than for influenza.


Subject(s)
COVID-19/therapy , Extracorporeal Membrane Oxygenation , Influenza, Human/therapy , Intracranial Hemorrhages/complications , Pulmonary Embolism/complications , Venous Thromboembolism/complications , Venous Thrombosis/complications , Adult , C-Reactive Protein/metabolism , Computed Tomography Angiography , Female , Fibrin Fibrinogen Degradation Products/metabolism , Fibrinogen/metabolism , Humans , Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza B virus , London/epidemiology , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , State Medicine , Tertiary Care Centers , Ultrasonography, Doppler
9.
ERJ Open Res ; 6(4)2020 Oct.
Article in English | MEDLINE | ID: covidwho-917915

ABSTRACT

BACKGROUND: The use of veno-venous extracorporeal membrane oxygenation (VV-ECMO) in severe hypoxaemic respiratory failure from coronavirus disease 2019 (COVID-19) has been described, but reported utilisation and outcomes are variable, and detailed information on patient characteristics is lacking. We aim to report clinical characteristics, management and outcomes of COVID-19 patients requiring VV-ECMO, admitted over 2 months to a high-volume centre in the UK. METHODS: Patient information, including baseline characteristics and clinical parameters, was collected retrospectively from electronic health records for COVID-19 VV-ECMO admissions between 3 March and 2 May 2020. Clinical management is described. Data are reported for survivors and nonsurvivors. RESULTS: We describe 43 consecutive patients with COVID-19 who received VV-ECMO. Median age was 46 years (interquartile range 35.5-52.5) and 76.7% were male. Median time from symptom onset to VV-ECMO was 14 days (interquartile range 11-17.5). All patients underwent computed tomography imaging, revealing extensive pulmonary consolidation in 95.3%, and pulmonary embolus in 27.9%. Overall, 79.1% received immunomodulation with methylprednisolone for persistent maladaptive hyperinflammatory state. Vasopressors were used in 86%, and 44.2% received renal replacement therapy. Median duration on VV-ECMO was 13 days (interquartile range 8-20). 14 patients died (32.6%) and 29 survived (67.4%) to hospital discharge. Nonsurvivors had significantly higher d-dimer (38.2 versus 9.5 mg·L-1, fibrinogen equivalent units; p=0.035) and creatinine (169 versus 73 µmol·L-1; p=0.022) at commencement of VV-ECMO. CONCLUSIONS: Our data support the use of VV-ECMO in selected COVID-19 patients. The cohort was characterised by high degree of alveolar consolidation, systemic inflammation and intravascular thrombosis.

SELECTION OF CITATIONS
SEARCH DETAIL